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2 Lawrence Berkeley National Laboratory, 1, Cyclotron Road, Berkeley, CA 94720, USA

Received: 3 July 2001 / Revised version: 19 September 2001
Published online: 21 November 2001 – c© Springer-Verlag / Società Italiana di Fisica 2001

Abstract. The absence of second class currents together with the assumption of the factorization for non-
leptonic B decays provide new constraints on CP observables in the decay B → a0(980)(→ ηπ)π. The
kinematics of this decay does not allow for interference between the oppositely charged resonances in
the Dalitz plot as in B0 → ρ(770)π. Nonetheless, under the assumption of factorization, the B → a0π
two-body time-dependent isospin analysis leads to a more robust extraction of the angle α than in the
B → ρπ isospin-pentagon analysis. The absence of second class currents might lead to enhanced direct CP
violation and/or allows for a test of some assumptions made in the α analysis in other decays like B → a0ρ,
B → b1(1235)π, B → a0a0, B → η(η′)ππ and B → b1a0. The effects from non-factorizable contributions
on the determination of α are estimated by means of a numerical study.

1 Introduction

The utility of the B → a0π decay for measuring the angle
α of the unitarity triangle by a time-dependent three-body
Dalitz plot [1] or a two-body isospin [2,3] analysis has
been emphasized by Dighe and Kim [4]. It thus joins the
list of channels like B → ππ and B → ρπ allowing one to
extract α.

These latter channels suffer from serious experimen-
tal limitations. The B → ππ decays have low branching
fractions [5,6] and measuring the π0π0 final state is an ex-
perimental challenge. The branching ratio of the B → ρπ
decay is larger [5,6], but this channel suffers from combi-
natorial background due to the presence of a π0 and con-
tamination from higher excitations [7], which complicate
the time-dependent Dalitz-plot analysis. The B → a0π de-
cay [8] has some advantages from the experimental point
of view, as pointed out by Dighe and Kim [4], since it is
easier to reconstruct an η than a π0 (due to the higher
energies of the final state photons) and since the width
of the a0 is narrower (around 60MeV [9]) than the width
of the ρ (150MeV [9]). These properties help to reduce
the combinatorial background, and should thus provide a
cleaner signal sample than for the B → ρπ mode.

However, the interference pattern, which is effective in
B → ρπ, is kinematically excluded in B → a0π. There is
simply no overlap between the B0 → a+

0 π− (→ ηπ+π− )
and B0 → a−

0 π+ (→ ηπ−π+ ) bands in the Dalitz plot,
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which provides the main source of interference in the B →
ρπ channel.

Focusing on the decays B → a0π and B → a0ρ, we
show in this paper that their analysis as two-body decays,
because of the absence of second class currents1, and un-
der the assumption of naive factorization, leads to a more
robust2 determination of the angle α, than the original
isospin-pentagon analysis proposed by Lipkin, Nir, Quinn
and Snyder [3] for B → ρπ and applied to B → a0π by
Dighe and Kim [4]. The effects of non-factorizable contri-
butions can be studied thanks to a likelihood analysis.

The time-dependent two-body B → a0π(ρ) analyses
proceed through seven- to nine-parameter fits depend-
ing on whether or not the charged modes are considered.
When statistics are limited, simpler four-parameter fits
can be performed for B → a0π(ρ) decays by using one
theoretical prediction of an amplitude (or a ratio of two
of them) [10].

Moreover, as advocated in Sect. 3.6, the elimination of
the leading tree contribution due to the suppression of
second class currents may give rise to enhanced direct CP
violation in the decay B → a0π, as well as B → b1π and
B → η(η′)ππ.

Finally, the B → a0π, B → a0ρ, B → a0a0, B → b1b1
and B → a0b1 decays provide a means for an evaluation
of the non-factorizable contributions.

1 This was first pointed out to us by J. Charles in a private
communication

2 The analysis is more robust in the sense that there are
either more degrees of freedom or less unknowns in the fit ex-
tracting α, which makes the fit more stable
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2 The absence of second class currents
in some non-leptonic B decays

In tree diagrams contributing to non-leptonic B decays,
part of the hadronic system is produced via coupling of
the virtual W to the quark current. Charmless final states
with zero net strangeness proceed via the W+ → ud̄ cou-
pling, with rates proportional to the CKM matrix element
|Vud|2.

In the naive factorization, the color singlet pair of
quarks hadronizes independently of the rest of the B de-
cay. This implies that there is no re-scattering (or final
state interaction) between the hadrons coming from the
W and the other hadrons of the final state. Under this
assumption, the production of hadrons resulting from the
coupling of quarks to the virtual W± abide by the same
rules as semi-leptonic τ decays. We recall some of the rel-
evant properties in the following.

The vector part of the weak current ūγµ(1 − γ5)d has
even G-parity, whereas the axial part has odd G-parity. It
follows that a virtual W+ decaying to ud̄ produces states
with an even G-parity and natural spin–parity (0+, 1−,
· · ·), or with an odd G-parity and unnatural spin–parity
(0−, 1+, · · ·). Decays with opposite combinations ofG- and
spin–parity are called second class currents, and are for-
bidden in the standard model up to isospin violations. This
is the case for the a0 which has G = −1 and JP = 0+,
and the b1 which has G = +1 and JP = 1+. Experimental
limits on second class currents are obtained, e.g., from the
measurement of the τ+ → ηπ+ντ branching fraction for
which the present limit reads 1.4 × 10−4 at 95% CL [9].

States with JP = 0+ are also forbidden by the con-
servation of the vector current, independently of their G-
parity, up to isospin violating corrections. Therefore the
W → a0 decay is doubly suppressed.

Whether the potential non-factorizable contributions
are small corrections or as large as the factorizable terms
is a controversial question. Non-factorizable contributions
effects on the α analysis are described in Sect. 4.

In addition to assuming naive factorization, contribu-
tions from annihilation and exchange diagrams are ne-
glected, since they are expected to be suppressed by helic-
ity conservation and3 by the quantity fB/mB , where fB

is the decay constant of the B.
Thus, under these assumptions, the absence of second

class currents leads to the suppression of tree diagrams in
which the a0 (b1) and the virtual W have the same charge.

Experimental tests of the factorization assumption and
measurements of the non-factorizable terms for the decays
treated in this paper are proposed in Sects. 3.1 and 5.4.

3 Extracting α from B → a0π
and B → a0ρ decays

This section aims at showing the consequences of the ab-
sence of second class currents in the extraction of α in the

3 This arises from dimensional arguments

B → a0π and B → a0ρ decays. The phase-space anal-
yses of B → a0π and B → a0ρ are not as powerful as
for B → ρπ, since the interferences between the different
resonances are weak (cf. Sects. 3.2 and 3.3).

The emphasis is put on the B → a0π(ρ) time-depen-
dent two-body analysis, which can be performed sepa-
rately for B → a0π and B → a0ρ. In effect, one could use
both modes in a combined fit, hence reducing the number
of mirror solutions for the angle α (cf. Sect. 3.5).

On the one hand, the branching ratio of B0 → a0ρ
is expected to be larger than that for B → a0π, just as
BR(τ → ρν) > BR(τ → πν). On the other hand, decays
involving a charged ρ (ρ± → π±π0) require the reconstruc-
tion of an additional π0. Finally, in contrast to B → a0π,
the time dependence of B0 → a0

0ρ
0 is measurable due to

the charged products of the ρ0 → π+π−.
Naive factorization is assumed throughout this section.

3.1 Tree and penguin contributions and consequences
of the absence of second class currents

In processes involving uūd non-spectator quarks, the de-
cay amplitude can be expressed in terms of the tree (T )
and u-, c- and t-penguin (Pu, P c, P t) contributions (where
the CKM matrix elements have been explicitly factorized
out):

A(uūd) = VtbV
∗
tdP

t + VcbV
∗
cdP

c + VubV
∗
ud(T + Pu)

= VtbV
∗
td(P

t − P c) + VubV
∗
ud(T + Pu − P c). (1)

The second line is obtained by using the unitarity relation
VubV

∗
ud + VcbV

∗
cd + VtbV

∗
td = 0. The amplitude is thus the

sum of two terms depending on the weak phases β (from
V ∗

td) and −γ (from Vub). We will neglect the contributions
from Pu and P c and propose a test of this assumption
later in this section. Therefore, the remaining t-penguin
provides us with β, whereas γ is only invoked by the tree
amplitude. We will denote these two contributions T and
P in the following, where P is restricted to the t-penguin
contribution only.

The B0 → ai
0π

j/ρj (with i, j = 0,+,−) decay ampli-
tudes Aij can thus be expressed in terms of tree (T ij) and
penguin (P ij) contributions and the weak phase α. For
example, the amplitudes for the B → a0π decay read

A(B0 → a+
0 π−) = A+− = e−iαT+− + P+−, (2)

A(B0 → a−
0 π+) = A−+ = e−iαT−+ + P−+, (3)

A(B0 → a0
0π

0) = A00 = e−iαT 00 + P 00, (4)

A(B0 → a+
0 π−) = A

+−
= e+iαT−+ + P−+, (5)

A(B0 → a−
0 π+) = A

−+
= e+iαT+− + P+−, (6)

A(B0 → a0
0π

0) = A
00

= e+iαT 00 + P 00, (7)

where the q/p mixing parameter [11] has been absorbed in
the Ā amplitudes, leading to the explicit presence of the
angle α. The T+− amplitude comes from the W+ → a+

0
transition, and is suppressed as a second class current for-
bidden tree (SCCFT). Therefore, the A(B0 → a+

0 π−/ρ−)
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and A(B0 → a−
0 π+/ρ+) amplitudes are pure penguin

transitions, and cannot display a direct CP violation:

A(B0 → a+
0 π−) = A+− = P+−, (8)

A(B0 → a−
0 π+) = A

−+
= P+−, (9)

and therefore

A(B0 → a+
0 π−) = A(B0 → a−

0 π+). (10)

Equality (10) follows from the absence of the VubV
∗
ud term

in (1). This, in turn, resulted from SCCFT killing the tree
contribution and our assertion that (Pu −P c) could be ig-
nored. Both are open to challenge. Failure of factorization
could introduce a tree contribution. The non-t-penguins
might not be small. Thus the VubV

∗
ud term cannot be

completely excluded, although its exclusion follows from
commonly made approximations. In addition, even if (10)
is verified experimentally, that would not prove that the
VubV

∗
ud term is absent. For (10) to be violated, there must

be differing strong phases from the VtbV
∗
td and VubV

∗
ud am-

plitudes and little can be said with confidence about such
strong phases a priori. Nevertheless, experimental confir-
mation of (10) would give circumstantial evidence in favor
of the assumptions made here.

3.2 The B → a0π three-body analysis à la ρπ

Dighe and Kim [4] have proposed to extract α from the
B → a0π decay using both two-body isospin and three-
body Dalitz-plot analyses.

The Dalitz-plot analysis fails because of the small in-
terference between the oppositely charged a±

0 , as shown in
Fig. 1. Since most of the interference occurs when the two
resonance bands intersect, the regions covering three times
the width (called the “3Γ interference region”) are indi-
cated for the a0 and ρ resonances. Kinematic boundaries
for B0 → ηπ+π− and B+ → π−π+π+ are also drawn. The
shape of the boundary in the left-hand bottom corner of
the B → a0π Dalitz plot is determined by the η mass,
which limits the available phase space. In contrast to ρ
in the B+ → π−π+π+ decay, the a0 mass and width are
too small to allow strong interferences to occur within the
kinematic limits of the Dalitz plot.

Interference can still occur far away from the 3Γ in-
tersection region, but it is less than 1% in the case of
B → a0π

4 and occurs in the badly known tails of the a0
resonance.

Therefore, the Dalitz-plot analysis for B → a0π is not
of interest.

3.3 The B → a0ρ four-body analysis

The modes B0 → a+
0 ρ−, B0 → a−

0 ρ+ and B0 → a0
0ρ

0

decay into the common four-body final state ηπ+π−π0.

4 Compare Sect. 3.3 for the description of a method on how
to compute the strength of the interference
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Fig. 1. Dalitz-plot kinematic boundaries for the B0 →
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a0 (light shade) and ρ (dark shade) resonances are also drawn,
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If interference between a0’s and ρ’s is strong enough, one
could perform a similar time- and phase-space-dependent
analysis as for B → ρπ.

To quantify the strength of the interference, the fol-
lowing parameter [7] can be evaluated:

ε =

∣∣∣∣∣
3∑

i=1

fi

∣∣∣∣∣
2/ 3∑

i=1

|fi|2 − 1, (11)

where f1 = f(a+
0 )f(ρ

−) cos θ, f2 = f(a−
0 )f(ρ

+) cos θ, and
f3 = f(a0

0)f(ρ
0) cos θ are the products of the a0 and ρ

Breit–Wigner expressions, taking into account the distri-
bution of the helicity angle θ (defined as the angle between
the ρ decay axis in the ρ rest frame and the direction of
the ρ in the laboratory frame). Using simple relativistic
Breit–Wigner parameterizations for the ρ and the a0 res-
onances5, the ε parameter distribution is computed using
B → a0π Monte Carlo events. The mean value of |ε| is
equal to ∼ 10%, corresponding to roughly half of what is
observed in B → ρπ [7]. Therefore the B → a0ρ decay
provides only limited interference effects.

The additional complication of having to reconstruct
an extra neutral particle makes this channel less acces-
sible than B → ρπ. Nevertheless, the time- and phase-
space-dependent analysis of the B0 → a0ρ decay provides
an independent and complementary way of measuring the
angle α without any ambiguities.

5 The a0 mass parameterization is complicated by the KK-
production threshold [9], and is not well known. Using a simple
Breit–Wigner expression is a rough approximation
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3.4 The B → a0π(ρ) two-body time-dependent
analyses

Since the B0 → ηππ three-body final state does not ex-
hibit interference in the Dalitz plot, one is led to a two-
body analysis, i.e. one where B0 → a+

0 π− and B0 → a−
0 π+

decays are considered as two-body final states. The anal-
ysis can be applied to B → a0ρ as well.

The time-dependent amplitudes for the two-body de-
cays B0(∆t) → a+

0 π− and B0(∆t) → a−
0 π+ (as well as for

the CP eigenstate B0 → a0
0ρ

0) read

A(B0(∆t) → a+
0 π−) ∝ e−Γ |∆t|/2 (12)

×
[
cos

(
∆m∆t

2

)
A+− + i sin

(
∆m∆t

2

)
A

+−
]
,

A(B0(∆t) → a−
0 π+) = e−Γ |∆t|/2 (13)

×
[
cos

(
∆m∆t

2

)
A−+ + i sin

(
∆m∆t

2

)
A

−+
]
,

where the cosine and sine terms describe the B0B0 flavor
mixing, and ∆t is the difference of the decay time between
the two B mesons produced at the Υ (4S) resonance in an
asymmetric B factory. The A+−, A−+, A

+−
and A

−+

amplitudes are defined in (2)–(9).
The time-dependent decay rate is obtained by squar-

ing (12) and (13), which leads to terms proportional to
sin2(∆m∆t/2), cos2(∆m∆t/2) and sin(∆m∆t):

Γ (B0(∆t) → a±
0 π∓) ∝ e−Γ |∆t|

[
A±

1 sin2
(
∆m∆t

2

)

+ A±
2 cos2

(
∆m∆t

2

)
+ A±

3 sin(∆m∆t)
]

(14)

∝ e−Γ |∆t|
[
A′±

1 + A′±
2 cos(∆m∆t) + A±

3 sin(∆m∆t)
]
,

where the A±
1,2,3, A′±

1,2 terms are combinations of the a±
0

π∓ amplitudes.
Therefore, each time-dependent B0 → a+

0 π−(ρ−),
B0 → a−

0 π+(ρ+) and B0 → a0
0(ρ

0) measurement provides
us with three observables: A′

1, A′
2 and A3.

The measurement of the branching ratios for charged
B decays B± → a0π(ρ) and/or for the neutral final state
B0 → a0

0π
0(ρ0) each provides one observable. Using

isospin invariance [2,3,11], one can link the penguin and
tree contributions from neutral and charged B decays,
which provides us with the missing pieces for the extrac-
tion of α:

√
2

[
T+0 + T 0+]

= T+− + T−+ + 2T 00, (15)

P 00 = −1
2
(P+− + P−+), (16)

P+0 =
1√
2
(P+− − P−+), (17)

P 0+ = − 1√
2
(P+− − P−+). (18)

Table 1 gives a comparison of the number of observ-
ables and unknowns for B → a0π, B → a0ρ, B → ρπ

and B → ππ analyses. Three analysis steps are described.
In the upper part of the table, only charged final states
of neutral B decays are used. In the middle part, neutral
final states of neutral B decays are added. In the lower
part, both neutral and charged B decays are taken into
account. Available isospin relations are indicated at each
analysis stage.

The leading contribution to B0 → a+
0 π−, the T+−

tree, is suppressed by SCCFT. One of the two contribu-
tions to the color-suppressed T 00 amplitude is removed by
the same SCCFT argument6, but the other contribution
remains. The leading contribution to the T+0 amplitude is
removed by SCCFT, but a color-suppressed contribution
remains.

The number of unknowns is given by the sum of tree
and penguin complex amplitudes involved at each analy-
sis stage, plus the angle α. One unphysical overall phase
and one irrelevant overall normalization constant are sub-
tracted from the total.

The number of observables available from a time-
dependent measurement is three (cf. (14)), and one for
the time integrated measurement. The overall normaliza-
tion is subtracted from the sum of observables.

Using only the charged final states of the neutral B
decays does not provide enough observables to constrain
α in any of the four analyses considered. Nevertheless,
using a single theoretical prediction for an amplitude (or
a ratio of amplitudes) in four-parameter B → a0π(ρ) and
two-parameter B → ππ fits would be enough to extract
the value of α. Such a model-dependent approach can be
performed with low statistics.

Adding the neutral final states does not further con-
strain the fits, either for B → a0π, or for B → ρπ,
B → ππ. In contrast, the B → a0ρ analysis does im-
prove, since time-dependence is observable and SCCFT
holds, though the fit is only barely constrained (seven ob-
servables versus seven unknowns).

Adding chargedB decays in the analyses allows all four
fits to converge, but with differing robustness: whereas the
B → ρπ two-body analysis consists of an eleven-parameter
fit with one extra constraint, in the B → a0π analysis
SCCFT decreases the number of parameters to nine, with
one extra constraint. As a consequence, SCCFT makes
the B → a0π analysis more robust. The B → a0ρ analysis
invokes a nine-parameter fit with two extra constraints,
and finally, being a CP eigenstate, the B → ππ analysis
is the simplest and is performed via a five-parameter fit.

Similarly to the B → ππ analysis, the requirement
to measure the B0 → a0

0π
0 branching ratio makes the

B → a0π analysis far more difficult.

3.5 Mirror solutions

CP violation in channels that benefit from SCCFT arises
from interference between tree and penguin diagrams.

6 This is because this contribution to the T 00 amplitude is
the Fierz-transform of T+−; therefore the same properties as
for T+− hold
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Table 1. Number of observables (O) and unknowns (U) involved in the B → a0π and B → a0ρ
analyses compared to the B → ρπ and B → ππ analyses. Upper part: charged final states of neutral
B decays. Middle part: neutral final states of neutral B decays. Lower part: charged B decays.
The time-dependence of neutral B decays yields three observables (cf. (14)) indicated with a “t”
subscript, whereas the “i” subscript corresponds to time-integrated measurements (yielding a single
observable). The fact that one can exchange the two pions in the B → ππ final state removes half
of the contribution to the number of observables and unknowns. An overall normalization and phase
are subtracted from the number of unknowns, and a normalization is subtracted from the number
of observables. The SCCFT argument applies to the B → a0π and B → a0ρ channels, removing one
observable (because two of them turn out to measure the same quantity) and two unknowns. The
number of constraints coming from isospin relations is given when available. The total number of
observables versus unknowns is indicated with bold characters when the fit is constrained

Channel Contributing a0π a0ρ ρπ ππ

Ex: B → a0π T & P Amplitudes O U O U O U O U
B0 → a+

0 π−

B0 → a+
0 π−

e−iαT+− + P+−

e+iαT −+ + P −+ 3t
5
4 3t

5
4 3t

5
4 3t

5
-

B0 → a−
0 π+

B0 → a−
0 π+

e−iαT −+ + P −+

e+iαT+− + P+− 3t - 3t - 3t - - -

Overall norm. & phase −1 −2 −1 −2 −1 −2 −1 −2

SCCFT (T+− = 0) −1 −2 −1 −2

Total using only B0’s 4 versus 5 4 versus 5 5 versus 7 2 versus 3

B0 → a0
0π

0

B0 → a0
0π

0
e−iαT 00 + P 00

e+iαT 00 + P 00
1i

1i

4
- 3t

4
- 3t

4
-

1i

1i

4
-

Isospin relation (15) −2 −2 −2 −2

Total adding neutral final state 6 versus 7 7 versus 7 8 versus 9 4 versus 5

B+ → a+
0 π0

B+ → a0
0π

+
e−iαT+0 + P+0

e−iαT 0+ + P 0+
1i

1i

4
4

1i

1i

4
4

1i

1i

4
4

1i

-
4
-

B− → a−
0 π0

B− → a0
0π

−
e+iαT+0 + P+0

e+iαT 0+ + P 0+
1i

1i
- 1i

1i
- 1i

1i
- 1i

- -

Isospin relations (16) and (17) −6 −6 −6 −4

Total adding charged B’s 10 versus 9 11 versus 9 12 versus 11 6 versus 5

Consequently, one measures α-dependent terms like sinα
and cosα. This is different from the B → ρπ analysis,
where tree–tree interferences dominate and result in terms
like sin 2α and cos 2α.

The extraction of α via B → a0π is done through
terms like sin(α + δ) and sin(α − δ), where δ is a strong
phase difference. It thus leads to multiple mirror solutions
for α in the interval [0, π], as in the two-body analyses of
B → ππ and B → ρπ.

In general, the number of mirror solutions depends
on the type of analysis (e.g., one solution for the time-
dependent Dalitz-plot approach in B → ρπ, but eight so-
lutions for the B → ππ isospin analysis). To overcome this
difficulty, the angle α has to be measured independently
in various channels.

3.6 Possible enhancement of direct CP violation

Even though direct CP violation is most frequently
searched for with charged B mesons, neutral B decays

can also be used to look for possible asymmetries in an
untagged sample7:

B(B0 → a+
0 π−) + B(B0 → a+

0 π−) �= (19)

B(B0 → a−
0 π+) + B(B0 → a−

0 π+), (20)

as well as in the tagged sample:

B(B0 → a+
0 π−) �= B(B0 → a−

0 π+). (21)

Indeed, the suppression of the leading tree due to SCCFT
may enhance direct CP violation, provided that the re-
maining T−+ and P−+ are of comparable magnitude.
Similarly, in the charged B decays, the interference of
the remaining color-suppressed tree (T+0) and the non-
dominant tree (T 0+) with penguin contributions may en-
hance direct CP violating effects.

In contrast to the extraction of α, the enhancement of
direct CP violation in the B → a0π channel does not de-
pend on the hypotheses made in Sect. 2 (factorization and

7 Untagged events should enter the α analysis as well
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the mirror solution becomes more pronounced as f increases.
For large values of f , it becomes a global minimum. Lower
plot: position of one of the local minima (the one located on
the true value of α for f = 0) as a function of f

neglecting u- and c-penguin contributions), since a failure
of the latter would not re-establish the hierarchy between
dominant trees and penguins. The possible enhancement
of direct CP violation only stems from the absence of sec-
ond class currents which is experimentally established.

4 Likelihood analysis

To assess the sensitivity to α, and to probe the effects
of non-factorizable contributions, the four time-dependent
(see (14)) and six time-independent measurements (see
Table 1) are implemented in a likelihood analysis. For this
toy experiment, tree and penguin amplitudes are assumed
to be the same as for the B → ρπ mode (apart for the
SCCFT tree T+−) as in [11], and α is taken to be equal to
1.35 rad. These values determine in particular the position
of the mirror solutions. The analysis assumes a total of
1500 events, which roughly corresponds to an integrated
luminosity of 500 fb−1, with a typical selection efficiency
of 10%.

The SCCFT effect is described by a factor f applied
to the T+− contribution of [11]:

T+−
a0π = f × T+−

ρπ , (22)

where f = 0 corresponds to naive factorization and a non-
zero f value mimics non-factorizable contributions. The
analysis of the events generated with this set of ampli-
tudes (where f varies, e.g., from 0 to 20%) relies on the
factorization hypothesis, i.e., f = 0.

Figure 2 shows the effects of non-factorizable contribu-
tions on the likelihood fit. The upper plot displays χ2 =
−2 lnL functions for f = 0 and f = 0.1. By construc-
tion, for f = 0, a minimum is located at the true value
of α: this is because an analytical expression is used for
the likelihood. A pronounced mirror solution is visible for
α  2.2 rad. For increasing values of f , this mirror solution
deepens and evolves toward a global minimum. The lower
plot illustrates the variation with f of the local minimum
corresponding to the true value of α for f = 0.

In view of the non-trivial shape of χ2(α) on Fig. 2,
one should not express the measurement of α in term
of a central value and a statistical error derived from
∆χ2(α) = 1. Instead, one should rather provide confi-
dence levels as a function of α [7]. Notwithstanding the
above remark, half of the range defined by ∆χ2(α) ≤ 1
leads to σ(α) = 0.23 rad. This value should be compared
to the systematic effect induced by the non-factorizable
contributions: for e.g. f = 0.1 the bias in α is 0.18 rad,
which is comparable to the statistical error.

5 Other charmless B decays related
to SCCFT

5.1 Non-resonant b → ηππ decay

The non-resonant B → ηππ decay is affected by the ab-
sence of the second class current as well: the coupling
W → ηπ remains forbidden since the ηπ state is always
produced with a natural spin–parity. As for B → a0π, this
can lead to an enhancement of direct CP violation.

Since the spin–parities of η′(958) and η(550) are iden-
tical, both B0 → ηπ+π− and B0 → η′(958)π+π− de-
cays should be considered. Contributions from channels
like B0 → η(η′)ρ0 contaminate the non-resonant signal
sample, and have to be vetoed.

5.2 B → a0π versus a0K

As in B → ππ the measurement of the ratio of B(B0 →
a0π)/B(B0 → a0K), under some assumptions (e.g., ne-
glecting the Cabibbo suppressed tree contribution in the
B0 → a0K decay), can help to estimate the ratio of tree
to penguin contributions to the B → a0π decay. It also
gives a handle on the charming penguin contributions.

5.3 Analysis of B0 → b1π

The b1 resonance, with even G-parity and odd spin–parity,
has the same properties leading to SCCFT as the a0, so
that the two-body analysis for α can be performed accord-
ingly.

Since the reconstruction of the b1 proceeds through
the decays b1 → ωπ → 3π±π0, the higher multiplicity
of the final state and the lower energy of the π0 renders
this mode less accessible. In addition, feed-through from
W → ωπ from the JP = 1− channel contaminates the
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b1(ωπ)π signal. On the other hand, the narrow b1 and ω
resonances and the helicity distribution improve the back-
ground suppression.

Finally, the non-resonant W → ωπ transition can be
produced in a G-parity allowed state due to the spin 1 of
the ω. Therefore, direct CP searches in the non-resonant
B → ωππ do not benefit from the absence of second class
currents.

5.4 Pure penguin a0a0, b1b1 and a0b1 decays

Due to the absence of second class currents, the decays
B0 → a0a0, B0 → b1b1 and B0 → a0b1 (to both charged
and neutral final states, the latter being Fierz-transformed
of the former) proceed via penguins only. Therefore, there
should not be any direct CP violation in these decays, un-
less if other contributions carrying a different weak phase
are present (u- and c-penguins, re-scattering from other
final states). The observation of direct CP violation in
these decays thus provides a direct measurement of the
non-factorizable contributions.

Similarly, the corresponding charged B tree decays (in-
cluding the color-suppressed ones, due to Fierz-transfor-
mation) are suppressed by both the absence of second class
currents and isospin conservation (15). The gluonic (u-, c-
and t-) penguin contributions to B± → a±

0 a0
0 and B± →

b±
1 b01 are suppressed by isospin conservation when insert-
ing the relation P+− = P−+ in (18). Hence, since both
tree and gluonic penguin contributions are suppressed, the
observation of the B± → a±

0 a0
0 and B± → b±

1 b01 decays
provides again a measurement of the non-factorizable con-
tributions.

Moreover, the time-dependent analysis of B0 → a0b1
allows one to extract the strong phase difference between
the two penguin amplitudes P+− and P−+. Nevertheless,
since the B → a0b1 decay has one η and four charged π in
the final state, the extraction of the signal is marred by a
large combinatorial background.

5.5 Decays into higher spin mesons

Due to angular momentum conservation, there is no cou-
pling of a virtual W to the hadronic states of spin larger
than one. The corresponding tree diagrams do not con-
tribute to the decay amplitude, thus causing effects similar
to those created by SCCFT.

One example of such decays is B0 → a2(1320)π →
ηππ. Other higher resonance excitations could be consid-
ered for similar analyses to those described in this article.

6 Conclusion

Constraints imposed by the absence of second class cur-
rents provide new opportunities for CP violation studies
in charmless B decays. In this article, we discussed how
the CKM angle α can be extracted from analyses of B de-
cays into the final states a0π(ρ) in a more robust fashion

than in the original isospin-pentagon analyses proposed
for B → ρπ and B → ππ. A similar analysis can be per-
formed for the decays b1π and η(η′)ππ, but these latter
modes are experimentally more challenging. Fits with four
(if one theoretical amplitude or one ratio of amplitudes is
added) to nine (with no such theoretical input) parameters
can be performed for each of these decays. A fit combin-
ing several channels would reduce the number of mirror
solutions, and decrease the error on α.

Significant enhancement of direct CP asymmetries
could arise in the following channels: B → a0π, B → b1π
and non-resonant B → η(η′)ππ due to the absence of
second class currents, independently of the hypotheses
needed for the extraction of α (i.e., factorization and the
neglect of u- and c-penguins).

Finally, many of these decays can be used to test the
factorization assumption, and measure the non-factoriz-
able contributions. For a luminosity of the order of about
500 fb−1, the systematic bias on α, induced by non-
factorizable contributions of the size of 10%, remains of
the same order as the statistical uncertainty.

Remark

Factorization breaking can be studied in B → a0π as de-
scribed in this article, and in a variety of other decays,
following the idea that the suppression of factorizable con-
tributions allows one to study the non-factorizable ones.
CP violation studies (measurement of 2β+γ and enhanced
CP asymmetries) can also be performed in these decays.
This has been independently described in two articles by
Diehl and Hiller [12].
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French), Université de Paris Sud (1999)



438 S. Laplace, V. Shelkov: CP violation and the absence of second class currents in charmless B decays

8. The branching ratio of B0 → a±
0 π∓ has been recently

measured by the BABAR collaboration: B. Aubert et al.,
Search for B0 → a0(980)π, July 2001, hep-ex/0107075

9. Particle Data Group, C. Caso et al., Eur. Phys. J. C 3, 1
(2000)

10. J. Charles, Phys. Rev. D 59, 054007 (1999)

11. BABAR collaboration, The BABAR Physics Book (1998)
12. M. Diehl, G. Hiller, SLAC-PUB-8822, DESY-01-060, hep-

ph/0105194, published in JHEP 0106, 067 (2001); M.
Diehl, G. Hiller, SLAC-PUB-8837, DESY-01-061, hep-
ph/0105213


